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Problem Statement

* Problem considered : Missing Value Imputation

* Input : Incomplete Multidimensional (MD) data
* Say : Sales data (number of units of a products sold), with 3 dimensions
* For each time (hour/day), product and store we have units sold

* Qutput : Imputed MD data
* Optimize : Minimise MAE loss between Ground Truth MD and Imputed MD



Challenges — Robustness in Wild

* Black-box Deep learning solutions rarely work out
* MRNN: Bidirectional RNNs

» “The results of our evaluation show that NN-based recovery techniques are
not suitable for the data we use here. For instance, MRNN [.] incur a high
error (average RMSE higher than 1), while it takes orders of magnitude more
time than the slowest algorithm from our benchmark” (2020)



Challenges — Robustness in Wild

* Work across arbitrary missing scenarios : a sample illustrated
e X1, X2, X3 : different time series

* Blackout’s imputation strategy very different from MCAR’s
* i.e. Model and it’s training should be amiable to missing scenarios
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Some common missing scenarios encountered in real world data



Challenges — Robustness in Wild

 Work across varied datasets
* Different correlations exist in real world dataset

* Periodic Time Series Datasets
* Non-Periodic Series with Temporal Patterns
* MID data with strong correlations across time series correlation

 Need to extract and combine both Within Time series and Across
Time Series relations



Challenges — General Purpose Utility

* Deep Learning
* Over-parameterized
» Dataset specific tuning
* Training Samples in order of millions
* Training time in order of hours/days
* GPU intensive compute

* Conventional methods (e.g. SVD imputation) are
* Parameter free (almost)
* Can be used as Blackbox
* No training. Just inference
* Running time in minutes
* GPU use minimal

* Pose problem for Deep Learning methods to be widely adopted



Challenges - Scalability

* MID data scales O(n*d) where we have d dimensions each having n
distinct values

* Conventional techniques scale linearly with data i.e. O(n”d)



Prior Work — Conventional

* High MAE loss
* Matrix Factorization based and Pattern Matching based
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Prior Work — Deep Learning

* Deep Learning methods fail to work on general real world problems

* Highly Parametric
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Contributions

* Modular neural architecture to extract and combine temporal and
cross-series signals

* Augment it with Robust and Scalable method of training parameters
to deal with varying datasets and missing scenarios

* Temporal Transformer module specializing in dealing with temporal
data
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* Given missing block for store s,
product p for time range t

 Black in figure

* View MD as set of d, n size vectors

* Each vector captures variation in 1
dimension keeping others constant

* E.g. Sale at store s for product p for all
time indices, Sale at all stores for
product p and time t

* Get predicted imputed value from all
n vectors in the set

* Linearly combine these predictions



Salient Features

* Better time complexity
* Approx O(nd) instead of O(n"d)

* Disentanglement of Imputation signals from dimensions for Robust
Imputation

* Final layers weights aid Interpretability and discovery of Causal signals



Salient Features

* Better time complexity
* Approx O(nd) instead of O(n"d)

* Disentanglement of Imputation signals for Robust Imputation

* Signals from temporal dimension work independent of signals from product
dimension

* Interpretability of imputation

* Weights of final linear combination indicative of causal dimension

* i.e. some datasets have periodic series while others have strong correlations in
sales across stores



Temporal Imputation

* Impute a single time series
* Time dimension is special : locality, periodicity

* Challenges to be resolved
* Blocks of missing values
* Long range dependency

* Design principals to be followed
* Don’t over-parameterize
* Fast training
* GPU memory efficient



Temporal Transformer

0 10 20 30 40 50 60 70 80
 Consider a single time series (i.e. the time vector from the set)
* Missing block shaded

* Temporal Transformer model to efficiently exploit temporal
dependencies



Would a simple Transformer work?

* A naive solution to applying transformer to

imputation task Q K

* Given some time indices with missing values

* Construct Key and Value from given indices as Multi-Head Attention Module
 Positional encodings concatenated with scalar
values
» Key for missing indices is 0 (mask these indices in
attention)

e Query for an index would be its positional
encoding



Would a simple Transformer work?

*|ssues with the approach?
* Queries just contains positional information (no contextual information)

» Keys and Values contain just the scalar values with positional encodings.
No contextual Information

* Would work well when position is strong signal
 Periodic series
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Our Solution : Temporal Transformer

Block representation of the data via

Y; = WeXipi +b
non-overlapping convolutions d JAwG+Lw T Ef

0.5 e Patterns emerge at block
level

> * Scalar values not
o5 » informative
o /\J/ * Reduces temporal span by

v factor of w increasing
—15- running time and
Y|y, (WYY, g

(I) 1I0 2I0 3IO 4IO SIO 6IO 7l0 8l0 d ec rea Si n g m e m O ry by
O(w”2)



Temporal Transformer

Values

G+Dw

Keys at all other positions K(,j,A) = (([Yj-1, Yj1] + ) Wi + by) - H A;

i=jw

V(Y) = Y;W, + b,

* A is Availability matrix,
used to mask out missing
positions

\/v \\ * e is the positional
encodings

Queryatindexi|  Q(Y,j) = ([Yj-1, Yis1] + €)W, + b,



Attn(Q(-), K(»), V(-), A, j) =
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hj = [Attnl(...), ,Attnnhead(".)]
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Multi-Head Attention module

Convolutional Decoder
(Blocks to scalar values)
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Why Temporal Transformer?

* Would time embedding help the model? Common place in DL
 Blackout Scenario has time ranges with no sample for training
* Provides an easy way for model to memorize the data

* Temporal Transformers modeling restricts the parameters to pattern matching
within the time series.

e Parameters don’t explicitly encode the scalar values at time indices

* Longer context for Queries and Keys?
* Experimentally didn’t yield significantly better results. Also computationally expensive

* Sensitivity to window size?

* Periodic series don’t have much sensitivity, while non-periodic series benefit from larger
window sizes

* Typical choice for window size == mean missing block size



Why Temporal Transformer?

* Would time embedding help the model? Common place in DL
 Blackout Scenario has time ranges with no sample for training
* Provides an easy way for model to memorize the data

* Temporal Transformers modeling restricts the parameters to pattern
matching within the time series.
* Parameters don’t explicitly encode the scalar values at time indices



Other Dimensions

* We talked about capturing temporal relations
in MD

e What about other dimension?

* Consider a dimension with k categories
* E.g. Store dimension with k=3 different stores

*Siblings : All OLAP cells with just 1 dimension
different
* E.g. For a cell of Product p sold in Store s at time

t, siblings along store dimension are all cells of 0
Product p sold in Store s’ at time t, where s’ /=s [

* All 1D colored strips correspond to different
siblings in different dimensions Tim




How to exploit Sibling Cells for Imputation?

* Each dimension is treated independently
* Each dimension gives its predicted imputed value

* Linear combination of these predictions taken as final prediction
* Done by concatenating the predictions and applying a linear layer on top



Kernel Regression Module

* We propose to solve the same using Kernel Regression
* Embed each dimension into a k dimensional space
* Each member of the dimension mapped to embedding in the space
* E.g. For Shop dimension, Shop1,Shop2,Shop3 each are given some embedding

* These embeddings are learnt and their Euclidean distance is propotional
to relatedness in the series
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Household Goods

Store 1

Kernel Regression b/w
Different Products
Same Store

Kernel Regression b/w
Different Stores
Same Product
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E[k] are the embeddings
Sib(k,i) gives all siblings of k along dimension |
A is the availability matrix masking points



Complete DeepMVI Model
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Scalable and Robust training procedure

* Naive Solution for Training
* Mask a block in Input and loss on output wrt GT input value

* 2 points of failure
* |gnores the arbitrary missing scenario of input matrix
* Wastes computation by having loss on just a block instead of whole series



Scalable and Robust training procedure

* Solutions? No masking in input

* Availability matrix for each cell is simulated missing patterns IID to input
missing scenarios

» Temporally Shift the missing blocks
* Permute missing blocks across series

* Apply loss on whole imputed sequence
* Single layer of attention with DeepMVI architecture ensures training



Datasets

* Extensive analysis on 10 datasets

* 8 from prior work
e 2 datasets on OLAP introduced

* The Repetition and Relatedness
analysis is qualitative
* Ablation studies back up the same

Dataset Number | Length | Repetitions | Relatedness
of TS of TS | within TS | across series
AirQ 10 1k | Moderate High
Chlorine 50 1k | High High
Gas 100 1k | High Moderate
Climate 10 5k | High Low
Electricity 20 5k | High Low
Temperature 50 5k | High High
Meteo 10 10k | Low Moderate
BAFU 10 50k | Low Moderate
JanataHack 76*28 134 | Low High Multi Dimensional
M5 10*106 1941 | Low Low Datasets

Table 1: Datasets: All except the last two have one categori-
cal dimension. Qualitative judgements on the repetitions of
patterns along time and across series appear in the last two

columns.

* Relatedness and Repetitions play a
major role in the error achieved by
methods on the dataset



Results — Missing Scenarios Prelims

* Blackout has signals from just Temporal Transformer
* Methods doing good temporal modeling would work here

* MCAR has signals from both Temporal and Across time series dimensions
 Algorithm should effectively exploit both correlations (final linear layer)

* Disjoint and Overlap not very interesting (special case of MCAR)
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(a) Disjoint  (b) Overlap  (c) MCAR (d) Blackout




Quantitative Results : Conventional Methods

e Better than All conventional methods

* Significant gains in Blackout and MCAR
* Conventional methods don’t model temporal relations

MCAR MissDisj
0.2 0.2
=, Uk 0 K 11
% Chlorine Temp .Gas Meteo BAFU Chlorine Temp Gas Meteo BAFU
;,:8 0 MissOver 1 Blackout
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Figure 5: Mean Absolute Errors (y-axis) on five other datasets (on x-axis) on all four scenarios - MCAR, MissDisj, MissOver,
and Blackout. Here, a fixed x = 10% of the series in each dataset has missing blocks.



Quantitative Results : Conventional Methods

MCAR MissDisj MissOver Blackout
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Figure 6: Mean Absolute Errors (y-axis) on three datasets along rows and under four missing scenarios along columns. X-axis
is percent of time-series with a missing block for MCAR, MissDisj, MissOver and size of the missing block for Blackout.

X axis is percentage of the time series having missing values



Quantitative Results : Deep Learning

Methods

* Best method on OLAP data (Walmart M5, JanataHack)

* Not better than BRITS on MCAR scenario

* Significantly better results on Blackout
* The robust training procedure of DeepMVI helps in same

* BRITS training procedure already supports Blackout
* Doesn’t have dependency on scalars on the same time step

Model Walmart M5 | JantaHack Climate
MCAR MCAR MCAR | Blackout
BRITS [4] 0.69 0.22 0.26 0.69
GPVAE([8] 0.60 0.28 0.43 0.81
Transformer [25] 0.56 0.24 0.29 0.67
DeepMVI(Ours) 0.53 0.16 0.28 0.38




Qualitative Results

* Top Row is MCAR
* Bottom Row is Blackout

* Different blocks are
different time ranges
imputed

 Conventional methods
completely fail on
Blackout Scenario

* Just interpolation between
the endpoints

Blockl Block2 Block3

Block4 Block5

—m&— Ground Truth —e— CDRec

DynaMMO —+— DeepMVI

Figure 4: Visualised Imputations on Electricity Dataset. The
top row shows MCAR missing blocks while the bottom rows
is for Blackout scenario.




Ablation Studies — Windowing Helps

* Comparison with Vanilla

Transformer model

Transformer
* No convolutions. Attention on Scalars 0.3 08 DeepmvI
. =
* Apart from Climate (strongly <
. . . -
periodic) all datasets benefit from 0.2
windowing \ -
* Just positional information sufficient Climate Electricity Meteo BAFU

for strongly periodic series



MAE

Ablation Studies

* We have a system able to do combine both Across Time series and

Temporal Patterns

* AirQ : Strong across series correlation, Need Kernel Regression

* Climate : Periodic series, Need Temporal, Contextual Query not needed

* Electricity : Temporal Patterns, Non-periodic, Contextual Query helps
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Downstream Analytics

e Consider an aggregate query
* Sales average over different stores

*In case of missing data

* We might just average over the
available stores : DropCell

*y axis is difference in MAE using
DropCell vs Aggregating after
Imputation
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[ 0 cDRec [l 0 BRITS [ 0 GPVAE [ B Transformer [  DeepMV1

Figure 11: Difference between Mean Absolute Error of Drop-
Cell and each algorithm is on y-axis, and four other datasets
on x-axis.



Other Works

* Prior exploration includes problems around Outlier detection
» Used insights from the analyses for developing DeepMVI

* Currently working on Joint Probabilistic Long-Range Query Forecasting
* Extends DeepMVI design principles to forecasting setting
* Incorporate developments in Probabilistic Joint Models



